• Arhiiv
    • Eesti füüsikapäevad ja füüsikaõpetajate päevad
      • 2017.a. füüsikapäevad
      • 2016.a. füüsikapäevad
      • 2015. a. füüsikapäevad
      • 2003.a. füüsikaõpetajate päev
    • EFS Täppisteaduste Suve- ja Sügiskoolid
      • 2017.a. sügiskool
      • 2016.a. sügiskool
      • 2015.a. sügiskool
      • 2014.a. sügiskool
      • 2013.a. suvekool
      • 2013.a. sügiskool
      • 2012.a. suvekool
      • 2012.a. sügiskool
      • 2011. a. suvekool
      • 2010. a. suvekool
      • 2010.a. sügiskool
      • 2009.a. sügiskool
      • 2008.a. suvekool
      • 2008.a. sügiskool
      • 2007. a. suvekool
      • 2007.a. sügiskool
      • 2006.a. suvekool
      • 2005.a. suvekool
      • 2005.a. sügiskool
      • 2004.a. suvekool
      • 2004.a. sügiskool
    • Füüsika õpetajate sügisseminarid Voorel
      • Voore 2017
      • Voore 2015
      • Voore 2011
      • Voore 2009
    • EFS aastaraamatud
    • Teaduslaagrid
    • Akadeemiline füüsikaolümpiaad
    • Tähe perepäevad TÄPE

FYYSIKA.EE

Elu, loodus, teadus ja tehnoloogia

  • Eestist endast
    • Arvamus
    • Teated
    • Persoon
    • Eesti füüsikaolümpiaadid
  • Teadusuudised
    • Eesti teadusuudised
      • Tartu Ülikool
      • KBFI
      • Tallinna Tehnikaülikool
      • Tõravere Observatoorium
    • FYYSIKA.EE hoiab silma peal – Teemad
    • Referaadinurgake
    • Päevapilt
  • Eesti Füüsika Selts
    • Teadusbuss
    • Füüsika, keemia ja bioloogia õpikojad
    • Füüsika e-õpikud
    • Eesti Füüsika Seltsi põhikiri
  • Füüsikaõpetajate osakond
    • Füüsikaõpetajate võrgustik
  • Füüsikaüliõpilaste Selts
  • Kontakt

Dynamics of a particle on an axisymmetric surface under gravitational force: a geometric approach

17.08.2017 by Kaido Reivelt

In this paper the problem of a particle constrained to move on an axisymmetric surface embedded in
three-dimensional Euclidean space, under the influence of a gravitational field, is addressed from a
geometrical point of view. Using a covariant geometrical approach at undergraduate level, a
variational framework is implemented in order to obtain the particle’s motion equation, which is
solved in an analytical way for the case where the particle moves on a cylinder and numerically when
the particle moves on a catenoid. The trajectories obtained are expressed as functions of conserved
quantities such as total energy, E , and the z component of the particle’s angular momentum, L 3 .
Moreover, expressions for normal and geodesic curvatures as well as the speed, tangential
acceleration and normal force constraining the particle on the surface along the trajectories are
obtained.

Filed Under: RSS Füüsikaharidus

Copyright © 2025 · Eesti Füüsika Selts · Log in