• Arhiiv
    • Eesti füüsikapäevad ja füüsikaõpetajate päevad
      • 2017.a. füüsikapäevad
      • 2016.a. füüsikapäevad
      • 2015. a. füüsikapäevad
      • 2003.a. füüsikaõpetajate päev
    • EFS Täppisteaduste Suve- ja Sügiskoolid
      • 2017.a. sügiskool
      • 2016.a. sügiskool
      • 2015.a. sügiskool
      • 2014.a. sügiskool
      • 2013.a. suvekool
      • 2013.a. sügiskool
      • 2012.a. suvekool
      • 2012.a. sügiskool
      • 2011. a. suvekool
      • 2010. a. suvekool
      • 2010.a. sügiskool
      • 2009.a. sügiskool
      • 2008.a. suvekool
      • 2008.a. sügiskool
      • 2007. a. suvekool
      • 2007.a. sügiskool
      • 2006.a. suvekool
      • 2005.a. suvekool
      • 2005.a. sügiskool
      • 2004.a. suvekool
      • 2004.a. sügiskool
    • Füüsika õpetajate sügisseminarid Voorel
      • Voore 2017
      • Voore 2015
      • Voore 2011
      • Voore 2009
    • EFS aastaraamatud
    • Teaduslaagrid
    • Akadeemiline füüsikaolümpiaad
    • Tähe perepäevad TÄPE

FYYSIKA.EE

Elu, loodus, teadus ja tehnoloogia

  • Eestist endast
    • Arvamus
    • Teated
    • Persoon
    • Eesti füüsikaolümpiaadid
  • Teadusuudised
    • Eesti teadusuudised
      • Tartu Ülikool
      • KBFI
      • Tallinna Tehnikaülikool
      • Tõravere Observatoorium
    • FYYSIKA.EE hoiab silma peal – Teemad
    • Referaadinurgake
    • Päevapilt
  • Eesti Füüsika Selts
    • Teadusbuss
    • Füüsika, keemia ja bioloogia õpikojad
    • Füüsika e-õpikud
    • Eesti Füüsika Seltsi põhikiri
  • Füüsikaõpetajate osakond
    • Füüsikaõpetajate võrgustik
  • Füüsikaüliõpilaste Selts
  • Kontakt

Solving the linear inviscid shallow water equations in one dimension, with variable depth, using a recursion formula

20.10.2017 by Kaido Reivelt

When solving the linear inviscid shallow water equations with variable depth in one dimension using
finite differences, a tridiagonal system of equations must be solved. Here we present an approach,
which is more efficient than the commonly used numerical method, to solve this tridiagonal system of
equations using a recursion formula. We illustrate this approach with an example in which we solve
for a rectangular channel to find the resonance modes. Our numerical solution agrees very well with
the analytical solution. This new method is easy to use and understand by undergraduate students, so
it can be implemented in undergraduate courses such as Numerical Methods, Lineal Algebra or
Differential Equations.

Filed Under: RSS Füüsikaharidus

Copyright © 2025 · Eesti Füüsika Selts · Log in